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SUMMARY

This paper describes the use of adaptive hierarchical grids to predict incompressible separated ¯ow at low
Reynolds number. The grids consist of a quadtree system of hierarchical Cartesian meshes which are generated
by recursive subdivision about seeding points. The governing equations are discretized in collocated primitive
variable form using ®nite volumes and solved using a pressure correction scheme. The mesh is locally adapted at
each time step, with panel division or removal dependent on the vorticity magnitude. The resulting grids have
®ne local resolution and are economical in array size. Results are presented for unidirectional, impulsively
started ¯ow past a circular and a square cylinder at various Reynolds numbers up to 5000 and 250 respectively. It
is clear that hierarchical meshes may offer gains in ef®ciency when applied to complex ¯ow domains or strongly
sheared ¯ows. However, as expected, the stepped approximation to curved boundaries resulting from the
Cartesian quadtree representation adversely affects the accuracy of the results for ¯ow past a circular cylinder.
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1. INTRODUCTION

Viscous ¯ow simulations are often calculated on non-adaptive structured meshes which allow fast

numerical methods to be employed. However, adaptive local mesh re®nement should be

advantageous for modelling unsteady ¯ows and ¯ows with high local gradients, in that ef®ciency

gains can be achieved in the relative distribution of calculation points. This paper considers the

application of adaptive hierarchical Cartesian meshes to the simulation of impulsively started ¯ow

past bluff cylinders at low Reynolds numbers where the ¯ow is essentially laminar.

Quadtree grids have been chosen as the basis of this work because they have a hierarchical tree

structure which aids storage and neighbour ®nding, they are quick to generate and are suitable for

adaptive remeshing applications. Moreover, quadtree grids can be generated automatically about any

boundary, no matter how complex or irregular, and can provide regions of very high resolution where

required (within the limitations of the computer).

The use of quadtree grids in image processing is described by Samet.1,2 Quadtree algorithms

have also been used to generate meshes for a variety of numerical schemes. For example, Yerry and
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Shephard3 describe quadtree-based ®nite element mesh generation for structural analysis, in which

triangular meshes are obtained from quadtree grids. Van Dommelen and Rundensteiner4 simulated

¯ow past a cylinder using a discrete vortex scheme whereby the stream function equation was solved

on an adaptive quadtree mesh, created using the locations of the discrete vortices as grid seeding

points. Quadtree grids have been applied with multigrid iterations to the solution of species transport

and linearized shallow ¯ow problems in complex domains by GaÂspaÂr and JoÂzsa,5 GaÂspaÂr and

Simbierowicz,6 JoÂzsa and GaÂspaÂr7 and GaÂspaÂr et al.8 Quadtree ®nite element methods using

quadrilateral and cubic elements were described by Young et al.9 for compressible ¯ows. De Zeeuw

et al.10 and Evans et al.11 have obtained ®nite volume solutions to the Euler equations on quadtree

grids.

This paper presents the quadtree algorithm, adaptive remeshing, ®nite volume discretization and

solution of the Navier±Stokes equations using Patankar's12 SIMPLE technique, and validation of the

scheme for low-Reynolds-number separated ¯ows.

2.1. Glossary of Terms

seeding points points about which the quadtree grid is generated

second-generation neighbour adjacent panel that has a division level of two less or greater than

the panel in question

regularized mesh mesh in which no adjacent edge ratio exceeds two

neighbour ®nding determination of panels having face and=or corner adjacency to the

panel in question

tree searching traversal of the tree data structure to locate a given panel reference

parent panel which has been divided to produce children

children panels resulting from division of parent

ancestor larger panel which encompasses the panel in question

binary transform function transforming 1 to 2 and 2 to 1

leaf undivided panel

neighbourhood set of reference numbers of a panel's face and corner neighbours

nearest common ancestor the smallest panel which is an ancestor of the given panels

hanging node an element's vertex located at the centre of an adjacent element's

face.

2. QUADTREE GRID GENERATION

The steps required to generate a quadtree grid for a maximum division level equal to Mmax may be

summarized as follows.

1. De®ne the set of seeding points Pn about which the mesh will be generated.

2. De®ne a unit square or rectangle (root panel) which surrounds the normalized domain of

interest.

3. Divide the root panel into four quadrant panels.

4. Consider each panel in turn; if the panel contains a point, continue with step 5; otherwise check

the next panel.

5. Check whether the maximum division level Mmax has been reached. If so, the division of the

panel in question is complete, so go to step 4 and check the next panel. When all panels

considered have reached the maximum division Mmax, the mesh generation is complete.

Otherwise continue.

6. Divide the panel into four congruent panels, return to step 4 and check the next panel.
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It is desirable to generate additional panels such that the maximum panel edge length ratio between

two adjacent panels does not exceed two. This limits the variation of discretization arrangements to a

manageable number. The regularization procedure determines hypothetical second-generation face

neighbours for each panel, searches the tree to see if they exist within the mesh, further divides the

panel if they do and so yields a regularized mesh.

The quadtree algorithm is illustrated by the following example of its application to a simple

seeding problem. Consider the unit square domain shown in Figure 1, containing three points about

which a ®ne mesh is required. The domain is initially divided into four subregions or panels as shown

in Figure 2. Each panel is then considered in turn: if the panel contains a point, then it is subdivided to

create four new panels; if not, then the panel is not divided further. This results in the mesh shown in

Figure 3. Each of the new panels is then considered in turn and divided if it contains a point, and so

the algorithm is repeated until the required resolution is achieved. In this case, if the maximum

number of divisions required equals four, then the mesh produced is that shown in Figure 4. The

simple quadtree algorithm produces a selectively re®ned Cartesian mesh with a recognizable

hierarchical tree structure. Figure 5 illustrates the tree structure corresponding to the mesh in Figure

4. After regularization the ®nal mesh is as shown in Figure 6.

The numbering system used here is based on that described by Van Dommelen and

Rundensteiner.4 The reference number N of a given panel is made up of a sequence of successive

integer translations at each generation level, which contain information regarding the position of the

panel and by manipulation lead to neighbour ®nding within the grid. A quadtree panel in a

regularized grid has eight possible neighbours of the same size and 12 possible neighbours one level

smaller in size. Face neighbours, with reference number NF, of a panel lie adjacent to it and have a

common side. Corner neighbours, with reference number NC, share a common corner with the panel.

Ancestral second-generation face neighbour panels, with reference number NSG, have an edge length

four times the size of a given panel and the two panels will be two generation levels apart.

For the test cases considered in this paper, the points Pn lie on the boundary of a square or circular

cylinder, and so a boundary-generated base mesh is created which may be adapted with further

divisions during the solution.

2.1. Numbering system

The panel reference number N is essentially a list of binary translations describing the position of

the panel. Herein, four arrays of eight digits have been used to represent the reference number, giving

Figure 1. Seed points Figure 2. Grid after ®rst-level subdivision
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a total of 32 digits corresponding to a maximum of

16 subdivisions of the root panel. To each binary digit �1 is added so that no zeros are contained in

the signi®cant part of the reference number, and trailing zeros are appended to give the required 32

digits. As division occurs, the positions of each of the four new panels produced are described by an x

and y binary translation 0 or 1; these digits are converted to base two and appended to the number of

the parent panel being divided to produce the number of each child or new panel. Hence the reference

number of a given panel contains in reverse order the reference numbers of its parent and all its

ancestor panels.

Translations at each level correspond to a separate co-ordinate system for each divided panel. The

local numbering of new panels at an arbitrary level is shown in Figure 7. Using this approach, the

binary path of panel B in Figure 8 is 101101, and so its reference number is NB� (21221200,

00000000, 00000000, 00000000). From the truncated reference number (which has trailing zeros

removed) the following information can be deduced.

Generation level. The number of divisions of the original root panel required to produce a panel of

given size is called the generation level of the panel, M, which is equal to the number of non-zero

digits in N divided by two. For example, the generation level of panel B in Figure 8 is equal to 3.

Figure 3. Grid after second-level subdivision Figure 4. Grid after fourth-level subdivision

Figure 5. Tree structure Figure 6. Regularized grid
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Parent panel. The reference number of the parent panel of a given panel is found by converting the

last two non-zero digits of N to zero. For example, the parent panel of panel B in Figure 8 has

reference number (21220000, 00000000, 00000000, 00000000).

Centre co-ordinates. The x- and y-co-ordinates at the centre of the panel are calculated by

successive translations, starting from the centre co-ordinates of the root panel. At each level M the

panel edge length is equal to 2ÿM . This calculation is expressed as

x � PM
m�1

1

2m�1
�2Nx�m� ÿ 3�; �1�

y � PM
m�1

1

2m�1
�3ÿ 2Ny�m��; �2�

where Nx�m� and Ny�m� are the mth and �m� 1�th integer values in N if N is viewed as a

concatenation of 32 integers. Thus, for panel B in Figure 8, Nx�1� � 2, Nx�2� � 2, Nx�3� � 1,

Ny�1� � 1, Ny�2� � 2 and Ny�3� � 2, and so, using equations (1) and (2), the co-ordinates at the centre

of panel B are (0�3125, 0�0625).

Neighbour ®nding. All possible neighbours of any panel can be determined from its reference

number N. This is a useful attribute when regularizing the mesh and for solving the discretized

equations using mesh sweeps. Once the complete set of reference numbers of a panel's potential

neighbours has been determined, the tree is searched to identify actual neighbours within the grid.

The tree search starts from the nearest common ancestor of a given panel and its neighbour and

ends when a leaf is reached. The reference number NCA of the nearest common ancestor shared by

two panels is given by consecutive digits common to both panels' reference numbers. Thus, if digits

at level m were modi®ed in order to construct a given neighbour reference number, then NCA is

obtained by discarding digits at levels5m.

Reference numbers increase down through the generations of a family, so that none of the

descendants of a given panel can have a reference number greater than that of the panel's next sister

panel (where sister panels have the same generation level). If a panel P, of generation level M, is

required and its reference number is greater than that of panel J but less than that of the next panel K,

each of a generation level less than M, it follows that panel J is an ancestor of P and the children of J

should be searched next.

Figure 7. Quadrant order and binary representation Figure 8. Example grid
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General rules for neighbour ®nding can be summarized as follows.

1. Break down the reference number into concatenated integer components �Nx and Ny).

2. Calculate lim x and lim y; working backwards through Nx and Ny, these are the levels at which

Nx�i� ®rst becomes not equal to Nx�iÿ 1� and Ny�i� ®rst becomes not equal to Ny�iÿ 1�
respectively.

3. Perform binary transforms on Nx and Ny as illustrated in the detailed example below. (In this

context, binary transforms are transposes of the digits 1 and 2.)

4. Construct the neighbour reference number by recombining the Nx and Ny components and

adding trailing zeros.

5. Determine NCA by discarding digits that are not common to both the panel and its neighbour

reference numbers.

6. Search the tree from NCA until a leaf is found.

In the following example, reference numbers are determined for the four face neighbours and four

corner neighbours of the panel marked D in Figure 9, which has a truncated reference number equal

to 211221. The reference number is decomposed into Nx � �2; 1; 2� and Ny � �1; 2; 1�, and so

lim x � 3 and lim y � 3. Each panel may have two face neighbours and one corner neighbour which

share the same parent panel. In Figure 9, panel D has the same parent as its west and south face

neighbours and its southwest corner neighbour. The reference number of the west face neighbour is

determined by performing a binary transform on Nx�M � and recombining the Nx and unaltered Ny

components, thus NFW � �21121100; 00000000; 00000000; 00000000�. The reference number for

the east face neighbour is created by performing binary transforms on Nx�lim xÿ 1� to Nx�M �, giving

NFE� 21221100, 00000000, 00000000, 00000000). Reference numbers for the north and south face

neighbours are created in a similar fashion, but by performing binary transforms on the corresponding

Ny components, i.e. on Ny�M � for the south neighbour and then on Ny�lim yÿ 1� to Ny�M � for the

north neighbour, giving NFS� (21122200, 00000000, 00000000, 00000000) and NFN� (21112200,

00000000, 00000000, 00000000). The southwest corner neighbour is created by binary transforms on

Nx�M � and Ny�M�, giving the number NCSW� (21121200, 00000000, 00000000, 00000000). The

reference number for the southeast corner neighbour is created by carrying out binary transforms on

Nx�lim xÿ 1� to Nx�M� and on Ny�M �, giving NCSE � �21221200; 00000000; 00000000; 00000000�.
The northwest corner neighbour is created by binary transforms on Nx�M � and on Ny�lim yÿ 1� to

Ny�M �, giving NCNW� (21111200, 00000000, 00000000, 00000000). Finally, the reference number

for the northeast corner neighbour is created by binary transforms on Nx�lim xÿ 1� to Nx�M � and on

Figure 9. Neighbours of cell D
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Ny�lim yÿ 1� to Ny�M �, giving NCNE� (21211200, 00000000, 00000000, 00000000). NCA for panel

D and its face neighbours W, S and SW is determined by comparing N with NFW, NFS and NCSW in

turn. In each case the common consecutive digits result in NCA� (21120000, 00000000, 00000000,

00000000). Similarly, by comparing N with NFE (or NFW), the reference number of the nearest

common ancestor shared between panels D and E (or N) is NCA� (21000000, 00000000, 00000000,

00000000).

Consider panel B with N� (21122100, 00000000, 00000000, 00000000). Let us conduct a tree

search for a panel with reference number NFN� (21112200, 00000000, 00000000, 00000000) in

order to check whether it exists as a leaf. Starting from the nearest common ancester with

NCA� (21000000, 00000000, 00000000, 00000000), the reference numbers of its children are

checked and NFN is found to lie between (21110000, 00000000, 00000000, 00000000) and

(21120000, 00000000, 00000000, 00000000). The children of (21110000, 00000000, 00000000,

00000000) are then checked. In this case the reference number of one of the children does match

NFN, which is not further divided and therefore corresponds to a leaf, and so the tree search is

terminated.

3. FINITE VOLUME DISCRETIZATION OF GOVERNING EQUATIONS

The governing equations in primitive variable form for a two-dimensional incompressible ¯ow

without body forces are the mass conservation equation

@u

@x
� @v
@y
� 0 �3�

and the Navier±Stokes momentum conservation equations

@u

@t
� @u

2

@x
� @vu

@y
� ÿ 1

r
@p

@x
� n

@2u

@x2
� @

2u

@y2

� �
; �4�

@v
@t
� @uv
@x
� @v

2

@y
� ÿ 1

r
@p

@y
� n

@2v
@x2
� @

2v
@y2

� �
; �5�

where x and y de®ne an orthogonal Cartesian co-ordinate system, u and v are the corresponding

velocity components, t is time, p is pressure, r is the ¯uid density and n is the ¯uid kinematic

viscosity.

The governing equations are discretized using ®nite volumes with collocated primitive variables

and solved by a pressure correction method based on that described by PericÂ et al.13 and Hortmann et

al.14 for regular grids. In essence, the scheme is similar to SIMPLE,12 but applied to hierarchical grids

with interpolations to deal with the non-staggered arrangement of variables.

Figure 10 shows a typical cell with pressure and velocity components located together at its centre.

The cell is a control volume of length dx and width dy. In the discretized equations, subscript P refers

to values belonging to the cell centre, subscripts E, W, N and S denote neighbouring cell centres,

subscripts e, w, n and s correspond to the cell faces and subscript Po represents central cell values

from the previous time step. Both momentum conservation equations are integrated over the control

volume and rearranged to give

aPuP �
P

anbunb � aPouPo � �pw ÿ pe� dy; �6�

aPvP �
P

anbvnb � aPovPo � �ps ÿ pn� dx; �7�
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where P
anbunb � aeuE � awuW � anuN � asuS; �8�

P
anbvnb � aevE � awvW � anvN � asvS: �9�

The coef®cients a combine convective and diffusive ¯uxes across control volume faces in accordance

with Patankar's12 power-law scheme. For collocated variables the coef®cients a are identical for both

momentum equations because they share the same control volume. The expressions for the

coef®cients used herein are given by

ae � De��0; �1ÿ 0�1jPej�5�� � ��ÿFe; 0��; �10�

aw � Dw��0; �1ÿ 0�1jPwj�5�� � ��Fw; 0��; �11�

an � Dn��0; �1ÿ 0�1jPnj�5�� � ��ÿFn; 0��; �12�

as � Ds��0; �1ÿ 0�1jPsj�5�� � ��Fs; 0��; �13�

aP � ae � aw � an � as � rDxDy=Dt; �14�
where the double brackets indicate taking the maximum of the values contained therein. The diffusive

¯uxes Di, convective ¯uxes Fi, and Peclet numbers Pi are de®ned as

De � mAe=dxe; Fe � rueAe; Pe � Fe=De; �15�

Dw � mAw=dxw; Fw � ruwAw; Pw � Fw=Dw; �16�

Dn � mAn=dyn; Fn � rvnAn; Pn � Fn=Dn; �17�

Ds � mAs=dys; Fs � rvsAs; Ps � Fs=Ds; �18�
where m is the dynamic viscosity and r is the density. Ai is the ith face area for the control volume and

di is the distance between the centre of the control volume and its neighbour in the relevant i-

direction. It should be noted that evaluating the convective ¯uxes independently would not

necessarily conserve these quantities.

Figure 10. Collocated variables

310 D. M. GREAVES AND A. G. L. BORTHWICK

INT. J. NUMER. METH. FLUIDS, VOL. 26: 303±322 (1998) # 1998 John Wiley & Sons, Ltd.



Using linear interpolation to obtain the cell face pressures, the discretized momentum equations

become

aPuP �
P

anbunb � aPouPo �
�pW ÿ pE� dy

2
; �19�

aPvP �
P

anbvnb � aPovPo �
�pS ÿ pN� dx

2
: �20�

Here the pressure gradient in the momentum equations has effectively been discretized using ®rst-

order central differences, which, if used for all equations, could give a solution independent of the

central pressure pP. To prevent such a checkerboard effect occurring, the cell face velocities were

determined using a special interpolation procedure. Consider the east face velocity ue for example.

With reference to Figure 11, the discretized u-momentum equations for nodes P and E are given by

uP �
P

anbunb � aPouPo � �pw ÿ pe� dy

aP

� �
P

; �21�

uE �
P

anbunb � aPouPo � �pw ÿ pe� dy

aP

� �
E

: �22�

The cell face velocity ue is obtained by linear interpolation of the terms involving velocities in the

equations above, and combined with a pressure gradient centred on the face velocity. Hence

ue �
P

anbunb � aPouPo

aP

 !
e

�
�1

aP

� �
e

�pP ÿ pE� dy; �23�

where the overbar indicates linear interpolation. Thus the cell face velocity depends on the pressure

gradient across the cell face.

The discretized continuity equation is

r�ue ÿ uw� dy� r�vn ÿ vs� dx � 0: �24�
Let the corrected values of pressure and velocity be the sum of a continuously updated guessed value

(denoted by superscript `asterisk') and its correction (denoted by superscript `prime'):

p � p*� p0; u � u*� u0; v � v*� v0: �25�
Neglecting the neighbour velocity correction terms, the u- and v-velocity may be expressed as

uP � uP*�
p0W ÿ p0E

2

� �
dy

aP

; �26�

vP � vP*�
p0S ÿ p0N

2

� �
dx

aP

: �27�

Figure 11. Cell face velocity
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After substitution of the equivalent velocity correction formulae for the four face velocities into the

discretized continuity equation, the following Poisson-type equation for the pressure corrections is

obtained:

apPpP � apEp0E � apWp0W � apNp0N � apSp0S � b; �28�

where the neighbour coef®cients are again given by (10)±(14). The term b represents a mass source

which approaches zero as the velocity and pressure corrections successively improve the corrected

values, and is given by

b � r�uw*ÿ ue*� dy� r�vs*ÿ vn*� dx: �29�

In cases where the adjoining cells have different sizes in the quadtree grid, hanging nodes, which

lie at the midside of an adjacent cell, will occur and the neighbour contributions to (4) and (5) have to

be calculated by interpolation. A weighted average of the smaller cell values is used if the neighbour

cell is smaller than the central cell; alternatively, linear extrapolation is used if the neighbour cell is

larger than the central cell. Further details of the interpolation scheme are given in Section 5 and by

Greaves.15

At each time step a single iteration on the momentum equations (8) and (9) is ®rst performed using

current estimates of velocity and pressure; next the pressure correction equation (17) is solved using a

maximum of six inner iterations, which were found to be suf®cient for convergence; the calculated

pressure corrections (14) are then used to update the pressure and velocity ®elds (15) and (16). This

completes one outer iteration, which is repeated until the sum of normalized residuals for all variables

has converged to less than 0�01. The calculation then proceeds to the next time step.

4. ADAPTIVE MESH REFINEMENT

The base quadtree grid (originally determined by seeding points lying on the cylinder boundary) is

adapted throughout the simulation in order to provide maximum resolution in areas of rapidly

changing ¯ow. This is achieved through the addition of new panels in regions of high absolute

vorticity and the removal of panels not included in the base grid in regions of low absolute vorticity.

Maximum and minimum vorticity limits are speci®ed in advance, and after each time step

calculation the vorticity in each panel is calculated. If the absolute vorticity in a given panel is greater

than the prescribed maximum, then that panel is divided, whereas if the absolute vorticity is less than

the prescribed minimum and the panel is not intrinsic to the base grid, then that panel may be

removed. In fact, panels are only removed in groups of four, when all four share a single parent and

all have values of absolute vorticity less than the prescribed minimum. Hence the mesh adapts at each

time step, providing selective re®nement in regions of high vorticity. In this way the grid structure

mimics vortical features of the ¯ow. It should be noted that the hierarchical nature of quadtree grids is

ideally suited to adaptive remeshing, because the addition=removal of leaf panels does not disrupt the

tree data structure.

Once remeshing is complete, the grid is again regularized by performing further divisions to ensure

that the maximum panel edge ratio is 2:1. The velocity and pressure values at newly generated panels

are then interpolated from neighbouring panels. Finally, the mesh is reordered to eliminate removed

panels from the tree and to ensure that no gaps occur in the list of panels, and the ¯ow computation

then proceeds to the next time step.
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5. RESULTS

Convergence tests are initially presented for simulation of potential ¯ow past an approximately

circular cylinder. In order to verify the grid-adaptive numerical model, three unidirectional,

impulsively started ¯ows are then considered, namely ¯ow past a circular cylinder at Re� 200 and

5000 and ¯ow past a square cylinder at Re� 250. Finally, simulations of ¯ow past a backward-facing

step are presented and comparisons drawn between adaptive grid results and those obtained on a

globally re®ned grid.

For ¯ow past cylinders the Reynolds number Re is de®ned by

Re � Uod=n; �30�
where Uo is the in¯ow velocity, d is the cylinder diameter (or width for the square cylinder) and n is

the kinematic viscosity of the ¯uid. Herein the characteristic dimension of the cylinder is

d� 0�02344 m, the in¯ow incident velocity is Uo� 0�02344 m s71, the ¯uid density is

r� 1000 kg m73 and the ¯uid kinematic viscosity n is assigned according to the required Reynolds

number. The normalized evolution time t* is de®ned as

t* � tUo=d; �31�
where t is the time from the impulsive start.

The lay-out of the computational domain is the same in all cases. The characteristic dimension of

the cylinder, d, is approximately 42 times smaller than the overall length of the domain (equal to

1 m), and the cylinder is positioned such that the in¯ow boundary is 11d upstream of the centre of the

cylinder. At each time step the calculation was considered to have converged when the sum of

normalized residuals fell below 5�061074. All simulations were performed on a SUN SPARC 10

workstation.

5.1. Potential ¯ow past a circular cylinder

Unidirectional potential ¯ow past a circular cylinder has an analytical solution and is used to test

the convergence of the quadtree grid-based scheme. Solutions are obtained on grids having various

levels of maximum resolution for comparison purposes. The governing equations are solved in

irrotational form by setting the dynamic viscosity coef®cient m to zero in the momentum equations,

and `slip' boundary conditions are used at the cylinder wall. The analytical solution for potential ¯ow

past a circular cylinder predicts that the pressure distribution around the cylinder is symmetric so that

the resultant drag and lift force components are both zero, in accordance with D'Alembert's paradox.

Quadtree grids of maximum division levels 9, 10, 11 and minimum level 5, and of maximum

division level 12 and minimum level 6 were tested. Figure 12 shows a portion of the level 10 grid

close to the cylinder. The grids have a stepped pro®le which approximates the curved boundary of the

circular cylinder in a fractal-like manner; clearly the surface roughness reduces for grids generated to

higher division levels.

The number of cells and CPU time required for convergence using each grid are summarized in

Table I, as well as drag and lift coef®cients for the four calculations. Comparison of the drag

coef®cients obtained suggests that the solutions converge as the grid resolution is increased, although

comparison of the lift coef®cients obtained is not conclusive.

5.2. Unidirectional ¯ow past a circular cylinder at Re� 200

The early stages of impulsively started laminar ¯ow past a circular cylinder consist of ¯ow

separation followed by the development of a symmetric pair of FoÈppl vortices which elongate with
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time. At Reynolds numbers greater than approximately 80 the downstream stagnation streamline

between the vortices begins to waver and the instability grows until a vortex detaches from the

cylinder and regular vortex shedding commences. Eventually, limit cycle conditions are reached

where vortices shed repeatedly from alternate sides of the body and an unsteady periodic wake forms.

Here results are compared with experimental visualizations obtained by Bouard and Coutanceau16

and numerical data provided by Franke et al.17 for impulsively started ¯ow past a circular cylinder at

Re� 200.

Figure 12 shows a portion of the initial quadtree computational grid containing a total of 1464

panels generated about a circle of seeding points. The grid has a maximum division level Mmax � 10

at the boundary of the cylinder, is regularized and has extra grid uniformity imposed to a resolution

level of 5. Initial values of all variables are zero everywhere to provide an impulsive start, and

boundary conditions of non-slip velocity and zero normal pressure gradient are applied at the cylinder

surface. A non-dimensional time step Dt* � 0�025 satis®ed the Courant condition. During the ¯ow

simulation the quadtree grid was adapted every 20 time steps, with individual panels subdivided if

their non-dimensional vorticity magnitude was greater than 1�0 and their division level was less than

9, or groups of four replaced by their parent if the vorticity magnitude fell below 3�0 and the division

level was greater than 8.

Figure 13 illustrates a portion of the adapted grid at normalized time t* � 2�5 when a symmetric

pair of vortices is beginning to develop behind the cylinder. Extra mesh resolution is evident in the

near wake behind the cylinder; the total number of grid panels is 1644. The relationship between the

Table I. Convergence test for potential ¯ow simulation showing variation in drag and lift coef®cients with
increasing grid resolution at cylinder

Maximum grid resolution Number of cells CPU time (s)
Drag coefficient

CD

Lift coefficient
CL

9 levels 1282 1969 0�33530 5�9905261072

10 levels 1464 4143 0�13267 9�3451261073

11 levels 1818 11031 6�1183261072 ÿ1�2014861072

12 levels 5578 40997 5�7615161074 ÿ1�3937661072

Figure 12. Initial grid, Re � 200, and potential ¯ow (level
10) Figure 13. Adapted grid, t* � 2�5
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locally resolved region of the adapted grid and the vorticity is evident by comparing Figure 13 with

the vorticity contours plotted in Figure 14. From the stream function contours in Figure 15 it is clear

that the reattachment length is approximately equal to the diameter of the cylinder. The ¯ow pattern

indicated by the streamlines and the position of separation points are in close agreement with Bouard

and Coutanceau's16 experimental results. The slightly discontinuous contours in the ®gures are due to

the plotting routine.

Figure 16 shows a portion of the adapted grid at a later time t* � 9�675; the locally resolved part of

the mesh has grown in conjunction with the elongated vortex pair shown in Figure 17 and contains

2804 panels. The streamlines plotted in Figure 18 show that the vortices are asymmetric and are

beginning to waver. At this stage the calculation required 1�017 s of CPU time per iteration and 8552

iterations to converge.

For the present simulation, vortex shedding established itself without external forcing, being

initiated by the accumulation of rounding errors in the solution. A typical adapted grid (of 2622 cells)

obtained during a vortex-shedding cycle is given in Figure 19 at t* � 152�063; 11,462 iterations at

0�512 s of CPU time per iteration were required for convergence. Again the locally re®ned mesh

bears a striking resemblance to the regions of high vorticity portrayed in Figure 20. The

corresponding streamlines are given in Figure 21; an attached primary anticlockwise vortex is

Figure 14. Vorticity contours Figure 15. Stream function contours

Figure 16. Adapted grid, t* � 9�7

Figure 17. Vorticity contours Figure 18. Stream function contours
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developing at the lower rear of the cylinder and a recently detached clockwise vortex is visible in the

near wake approximately one cylinder diameter downstream of the cylinder. In general the ¯ow

patterns calculated using the present method were very similar to those published by Franke et al.17

throughout the vortex-shedding cycle. However, the far wake is narrower than that predicted by

Franke et al.17 This discrepancy may be due to numerical diffusion or to roughness from the stepped

boundary approximation.

5.3. Unidirectional ¯ow past a circular cylinder at Re� 5000

The early stages of ¯ow past a circular cylinder at Re� 5000 were simulated for comparison with

¯ow visualizations by Bouard and Coutanceau.16 In this case the initial grid, shown in Figure 22, has

a maximum division level equal to 11 and a base uniform grid level equal to 6. Close examination of

the surface of the cylinder indicates that it is signi®cantly rough, with a maximum step height

approximately equal to 1
48

th of its radius. The initial and boundary conditions were identical to the

above case. Throughout the ¯ow simulation the grid was adapted every 20 time steps.

Figures 23±25 depict the adapted grid, vorticity contours and streamlines obtained using the

present model at t* � 2�5. The streamlines agree reasonably with the ¯ow pattern in Figure 26,

visualized experimentally by Bouard and Coutanceau.16 A kink is clearly seen in the exterior

boundary of the recirculating zone, though the secondary eddies obtained experimentally by Bouard

and Coutanceau16 are not predicted using the present scheme, indicating insuf®cient mesh resolution

in the immediate vicinity of the cylinder. Also, the width of the wake is narrower than that produced

experimentally. As before, discrepancies in the ¯ow features close to the cylinder may have arisen

from its stepped surface causing additional separation, whereas those in the wake may be due to

Figure 20. Vorticity contours Figure 21. Stream function contours

Figure 19. Adapted grid, t* � 152�1
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numerical diffusion. It should be noted that although the present method predicts the commencement

of impulsively started, separated, fully laminar ¯ow at Re� 5000, a numerical model which includes

turbulence would be necessary to simulate properly the longer-term ¯ow features.

5.4. Unidirectional ¯ow past a square cylinder at Re� 250

Results are presented here for vortex shedding from a square cylinder in unidirectional ¯ow at

Re� 250. The initial grid is shown in Figure 27 and consists of a total of 1696 panels generated from

seeding points representing the boundary of the square cylinder; the lowest level of resolution is 5 and

Mmax � 10. Maximum and minimum levels of grid resolution for adaptation are 10 and 9

respectively. As before, the simulation started from rest, with velocities and pressure equal to zero

everywhere. The non-dimensional time step is Dt* � 0�025 and the mesh was adapted every 40 time

steps. Once vortex shedding was established, a typical adapted grid contained 7234 panels and

required 6368 iterations for convergence, with 3�76 s of CPU time taken per iteration.

Figure 28 illustrates a portion of the adapted grid at t* � 124�0. Figures 29 and 30 show the

corresponding vorticity and stream function contours. The presence of detached vortices may be

clearly discerned in both the adapted grid and the vorticity contour plot. The streamline pattern in

Figure 30 demonstrates that separation is occurring from the front corners of the square cylinder. A

Figure 22. Initial grid, Re � 5000 Figure 23. Adapated grid, t* � 2�5

Figure 24. Vorticity contours Figure 25. Stream function contours
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nascent vortex is developing along the cylinder's lower side and a recently detached clockwise vortex

can be seen in the downstream wake. It should be noted that the sharp corners of the square are

singular points in the ¯ow. Although the meshing is re®ned close to the boundary, the corner ¯ow

cannot be predicted properly. Even so, the results agree favourably with visualized experimental ¯ow

patterns and theoretical predictions produced by Okajima18 and Davis and Moore.19 However, the

wake width predicted by the present method appears slightly narrower than that predicted by

Okajima.18

5.5. Backward-facing step

The numerical model was used to simulate laminar ¯ow past a backward-facing step at

Re � Uh=n � 50. Here U is the mean velocity across the inlet, h is the step height and n is the ¯uid

kinematic viscosity. The upstream boundary is located one step dimension h in front of the expansion,

the channel width is 2h and the overall channel length is 14h. A parabolic velocity pro®le is speci®ed

at the upstream boundary. Flow simulations were undertaken for three grid con®gurations, namely a

base unadapted quadtree grid, an adapted grid and an equivalent globally re®ned grid. The base and

Figure 26. Experimental results of Bouard and Coutanceau16

Figure 27. Initial grid, Re � 250 Figure 28. Adapted grid, t* � 124�0
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adapted quadtree grids had a maximum of seven and a minimum of ®ve division levelsÐthe adapted

grid is illustrated in Figure 31Ðand the globally re®ned grid had seven levels. Figure 32 depicts the

steady state velocity vectors obtained using the adapted grid in the vicinity of the step. The ¯ow

structure in the entire channel is shown in Figure 33. Table II lists grid details, the number of cells,

CPU time and the predicted ¯ow reattachment length. The results suggest that with a careful choice

of maximum and minimum division levels within the adapted grid, worthwhile savings can be

achieved through employing an adaptive mesh.

5.6. Hanging nodes

The quadtree grid poses a discretization problem for the Navier±Stokes equations because it is

dif®cult to obtain a ®rst differential across adjacent cells of different sizes. This problem is due to

hanging nodes which lie on adjacent cell faces in irregular non-conforming grids. In this work an

averaging method is used to overcome the hanging node problem. Momentum and pressure

discretization equations are constructed on a regular stencil of neighbours having the same cell size as

the central cell; for example, if the east neighbour pressure value is required and the east neighbour

Figure 29. Vorticity contours Figure 30. Stream function contours

Figure 33. Velocity vectors, adapted grid

Figure 31. Adapted grid Figure 32. Velocity vectors, detail at step
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cells are one level smaller than the central cell P, as in Figure 34. The east pressure value used in

calculations is the weighted average of the four adjacent cell pressures:

pE �
15

16

pE1 � pE2 � pE3 � pE4

4

� �
� 1

16

pE1 � pE2

2

� �
�32�

When the east neighbour cell is larger than the central cell, the pressure value of the larger cell is

obtained by bilinear interpolation between the large cell and its surrounding neighbours. In Figure 35

the pressure belonging to the ®ctitious east neighbour position E� is calculated for cell P as follows:

pE� �
9pE � 3pC � 3pNE � pN

16
�33�

A disadvantage of this method is that it leads to a conservation error: the mass ¯ux leaving a large

cell will not necessarily equal the sum of mass ¯uxes entering the two smaller cells. The signi®cance

of this error was investigated by applying an alternative scheme in which cell face ¯uxes are

corrected to enforce conservation at interfaces. The reattachment predicted by this method is also

given in Table II and is found to agree slightly better with results from the globally re®ned grid.

6. CONCLUSIONS

Quadtree-based hierarchical meshes are ef®cient in controlling the overall number of grid panels

while providing ®ne resolution at boundaries and at ¯ow features. The grids are readily adapted

according to vorticity criteria and are therefore closely linked to the evolving ¯ow ®eld. For each ¯ow

Table II. Summary of results for simulation of ¯ow past a backward-facing step at Re � 50

Grid Number of cells CPU time (s) Reattachment length

Globally re®ned uniform grid 3622 5128 3�55
Base quadtree grid 853 1277 2�63
Adapted quadtree grid 1879 2944 2�95
Adapted quadtree grid with interface correction 1879 3140 3�00

Figure 34. East neighbour Figure 35. East neighbour
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simulation considered here, the streamline patterns agree reasonably with published data, though the

wake tends to be narrower, and in some cases the length of the separation bubble shorter, than

obtained by other numerical methods or experiment. These underpredictions may be due to numerical

diffusion caused by interpolation errors associated with adaptive regridding of the hierarchical

quadtree grids.

The discrepancies noted for the circular cylinder simulations arise from the stepped approximation

to the curved boundary. It is recommended that alternative approximations to the curved cylinder

boundary should be investigated, such as a triangular mesh. In addition, the solution was found to

converge very slowly using point-by-point iterations on the quadtree grids. The use of fast iterative

solvers such as multigrids should accelerate convergence of the Poisson equation (28). Multigrid

iterations may be ideally suited to quadtree grids, as the tree structure inherently contains nested

grids. GaÂspaÂr et al.,8 GaÂspaÂr and JoÂsza5 and GaÂspaÂr and Simbierowicz6 have investigated the use of

multigrid techniques with quadtree grids for solving convection±diffusion problems.

In this work the method has been applied solely to subcritical ¯ows for which the maximum

Reynolds number is equal to 5000. However, the additional resolution achieved in the wake indicates

that it should be possible to simulate ¯ows at higher Reynolds numbers. Used in combination with a

turbulence model, the adaptive method with suf®ciently high resolution may provide a convenient

representation of small-scale eddies as they develop in post-critical turbulent ¯ows.
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